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Abstract: In this paper, an analytical solution for the inverse kinematics of a redundant manipulator with seven 

degrees of freedom and an offset rotation axis is presented. We provide a model for the redundant manipulator and 

introduce its self-motion. Considering geometric symmetry, sixteen sets of manipulator joint angles are obtained at 

once. Avoidance of singularities and obstacles is illustrated by simulation results. 
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Introduction 

Many manipulators have been used for assembly 

tasks in factories to improve quality and to reduce the 

cost of the products being fabricated. Commonly, a 

manipulator has six degrees of freedom and several 

rotation axes offsets. These offsets are utilized to 

increase the manipulator task space. The motion of the 

manipulators in the expanded task space, however, is 

restricted by singularities and joint motion limits. 

Redundant degrees of freedom are used to ease these 

restrictions. 

Yoshikawa introduced a measure of manipulability 

and showed that the degradation of manipulability of a 

four-joint wrist mechanism could be avoided by the 

addition of redundant degrees of freedom [1]. 

Hollerbach discussed the optimum design for a 

redundant seven degrees of freedom manipulator, and 

suggested that a rotary joint should be added to the 

PUMA type manipulator in the upper arm link [2]. 

Kreutz-Delgado et al. introduced an arm angle as a 

redundancy parameter to specify a self-motion of a 

redundant zero-offset manipulator, and characterized its 

algorithmic and kinematic singularities [3]. Shimizu et al. 

proposed an analytical solution for the inverse 

kinematics for a redundant manipulator without offsets 

using the arm angle, and analyzed the relations between 

the arm angle and joint angles to obtain feasible 

solutions by avoiding joint motion limits [4]. Singh et al. 

proposed an analytical solution for the Barrett WAM 

(Whole Arm Manipulator), which is a seven degrees of 

freedom manipulator with offsets and illustrated feasible 

poses [5]. 

As far as the authors know, there have been no 

reports of an analytical solution for the inverse 

kinematics of a redundant manipulator with an offset in 

the upper arm. In this paper, such an analytical solution 

is presented. This approach allows intuitive specification 

of the manipulator's self-motion in order to produce 

continuous movement in its wide task space. 

In the proposed approach, the elbow position of 

the redundant manipulator is specified directly, since this 

naturally specifies the self-motion of the manipulator. 

This allows the redundant manipulator to move whilst 

avoiding physical obstacles located in the area between 

the end-point of the manipulator and the origin of the 

base coordinate system attached to the base of the 

manipulator. The offset angle of the first joint from the 

first joint angle of the manipulator without a redundant 
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rotational joint is used to specify the elbow position of 

the redundant manipulator. In addition to the offset 

angle, the position and the orientation of the end-point 

of the manipulator are also taken into account to derive 

the inverse kinematics analytically. 

The computation time of the proposed algorithm is 

shorter in general than those of the recursive algorithms 

widely used for computing the inverse kinematics of a 

redundant manipulator. Feedback control with a higher 

sampling rate is realized to obtain smooth motion of the 

manipulator. Consideration of geometric symmetry gives 

sixteen sets of joint angles for the redundant 

manipulator simultaneously. This allows the programmer 

to choose a set of joint angles to control the redundant 

manipulator, while avoiding singularities and obstacles 

around the manipulator and joint limits. 

Manipulator Model 

The manipulator model is depicted in Figure 1. A 

rotary joint is added to the PUMA type manipulator in 

the upper arm link. There is an offset of the rotation axis 

between the first joint and the second joint. The 

Denavit-Hartenberg parameters are given in Table 1 Here, 

0 and 7 are the base coordinate system and the 

end-point coordinate system, respectively. The unit 

vectors parallel to the x-, y-, and z-axes of the end-point 

coordinate system are n , t  and b , respectively.  

Self-motion 

In the research works reviewed above, the arm 

angle is used to specify the self-motion. The arm angle is 

defined as angle between the reference plane and the 

arm plane spanned by the shoulder, elbow, and wrist. 

Here, the shoulder position is defined as the intersection 

of the first, second, and third joint axes. The elbow 

position is the center of the fourth joint. The wrist 

position is defined as the intersection of axes of the fifth, 

sixth, and seventh joints. Due to the offset between the 

first joint and the second joint, the arm angle cannot be 

used in the case of the manipulator shown in Figure 1. To 

specify the self-motion, an offset angle  of the first joint 

from the first joint angle of the manipulator without a 

redundant rotational joint is introduced as shown in 

Figure 2. The elbow position on the x-y plane of the base 

coordinate system can be controlled with the offset angle 

. This approach allows a programmer to specify the 

self-motion intuitively. 

 
Table 1. Denavit-Hartenberg parameters of the manipulator. 

Joint i i  
i  [rad] di [m] ai [m] 

1 1 /2 d1 1a  

2 2 -/2 0  0  

3 3 /2 d3 0  

4 4+/2 -/2 0  0  

5 5 /2 -d5 0  

6 6+ /2 0  0  

7 7 0 -d7 0  

 

 
 

Figure 1. Manipulator model. 
 

 
Figure 2. Self-motion of the manipulator. 

 

Forward Kinematics 

 The homogeneous transformation matrix from the 

coordinate system of the (k-1)th joint to the kth joint, 

and its inverse, are given below with the 

Denavit-Hertenberg parameters shown in Table 1. 
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Here, Sk and Ck denote sink and cosk, respectively. 

Similarly, Sk and Ck respectively denote sink and 

cosk  

The transformation matrix from the origin of the 

base coordinate system to the end-point of the 

manipulator is given as follows:  

 
0 0

0 0 1 1
1 2

ˆ
ˆ ˆ ˆ ˆ ˆ .

0 0 1

n n n
n n

R T
T A A A A 

 
    

 
     (3) 

 

Here, 0ˆ
nR  and 

0
nT  are respectively the rotation matrix 

and the translation vector from the origin of the base 

coordinate system to the end-point. The rotation matrix 

consists of n , t  and b . The translation vector 

corresponds to the position vector of the end-point p . 

The wrist position can be calculated using the 

forward kinematics derived above. The offset angle  

shown in Figure 3 is obtained as follows: 

 

 1
1 tan .y xw w        (4) 

 

Inverse kinematics 

First Joint Angle 

The wrist position w , which is defined as the 

intersection of the axes of the fifth, sixth, and seventh 

joints (as shown in Figure 3), is given by 

 

7 .w p d b       (5) 

 

The first joint angle of the manipulator without a 

redundant rotational joint is given as  1tan y xw w
. 

Then the first joint angle 1 is obtained as follows: 

 

   1
1 1 tan .y xw w      (6) 

 

Considering geometric symmetry in Figure 3, the 

first joint angle given below can also be used: 

   1 12 1 .         (7) 

 

Second, Third and Fourth Joint Angle 

The wrist position of the first joint coordinate 

system w  shown in Figure 4 is computed as follows: 

 

 1
0 1

ˆ .
1 1

w w
A 

   
   

   
    (8) 

 

The fourth joint angle is obtained by the 

Pythagorean theorem, which gives 

 

    21 2 2
4 3 5 3 51 sin 2 .w d d d d       (9) 

 

To obtain the second joint angle, an angle   

must first be found; it is given by 

 

 1tan .y xw w        (10) 

 

The second joint angle is then derived: 

 

    1 2 2
2 3 5 41 sin sin .x yd d w w         (11) 

 
 

 
Figure 3. Wrist position and first joint angle. 
 

 
Figure 4. Second joint angle and fourth joint angle. 
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Figure 5. Third joint angle. 
 

 

 
Figure 6. Geometric symmetry of second, third and fourth joint angle. 
 

 

 
Figure 7. Fifth and sixth joint angle. 
 
 

 

 
Figure 8. Geometric symmetry of fifth and sixth joint angle. 

 
 

 
Figure 9. Seventh joint angle. 

The wrist position of the second joint coordinate 

system w  shown in Figure 5 is computed by 

 

 2
1 2

ˆ .
1 1

w w
A 

    
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   
   (12) 

 

The third joint angle is obtained as follows: 

 

   1
3 1 tan .y xw w       (13)  

 

Considering geometric symmetry in Figure 4 and 

Figure 5, the following expressions can also be used for 

the second, third, and fourth joint angles:  

 

   2 22 1 ,      (14) 

 

   3 32 1 ,       (15) 

 

   4 42 1 .       (16) 

 

Considering geometric symmetry in Figure 6 then 

gives the following expressions for the second, third, and 

fourth joint angles:  

 

   2 23 2 1 ,         (17) 

 

   3 33 1 ,       (18) 

 

   4 43 1 ,       (19) 

 

   2 24 2 1 ,         (20) 

 

   3 34 1 ,        (21) 

 

   4 44 1 .      (22) 

 

Fifth and Sixth Joint Angle 

The position of the end-point corresponding to the 

fifth joint coordinate system p  shown in Figure 7 is 

computed as follows: 

 

         5 4 3 2 1
4 3 4 2 3 1 2 0 1
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 (23) 

 

The fifth and sixth joint angle are obtained as 

follows: 

 

   1
5 1 tan ,z xp p        (24) 

6n

n

pv7
b

6npv

7

n

b

p5x

5y

5z

5

5O
5

6

p5x

5y

5z

5

5O

5

6

w

1x1z

1y

1

1O

w

3
2x

2y
2z

2

2O



Takashi Nammoto and Kazuhiro Kosuge 

www.ausmt.org  343      auSMT Vol. 2 No. 4 (2012) 

Copyright ©  2012 International Journal of Automation and Smart Technology 

   1
6 1 cos .yp p       (25) 

 
 

Considering geometric symmetry in Figure 8, the 

fifth and sixth joint angles can also be expressed as  

 

   5 52 1 ,        (26) 

 

   6 62 1 .       (27) 

 

Seventh Joint Angle 

To obtain the seventh joint angle, the unit vector 

parallel to the x-axis of the sixth joint coordinate system 

is first computed as follows: 

 

 6 0
6

ˆ 1 0 0 0 .
0

Tn
A

 
 

 
   (28) 

 

The vector product pv  and scalar product sp of 

the unit vector parallel to the x-axis of the sixth joint 

coordinate system, and the unit vector parallel to x-axis 

of the end-point coordinate system, are computed thus: 

 

6 ,pv n n      (29) 

 

6 .ps n n      (30) 

 

The direction of rotation of the seventh joint is 

computed using the scalar product of pv  and the unit 

vector parallel to the z-axis of the end-point coordinate 

system as shown in Figure 9. The seventh joint angle is 

then obtained: 
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1 .
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

  
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  (31) 

 

Considering geometric symmetry in Figure 8, the 

seventh joint angle given below can also be used:  

 

   7 72 1 .        (32) 

 

Sixteen Sets of Joint Angles 

Considering geometric symmetry, sixteen sets of 

joint angles for the redundant manipulator are obtained 

simultaneously with the process derived above. The sets 

of joint angles are given in Table 2. The values in the 

Table 2 denote the index of the solution for each of the 

joint angles. 

Table 2. Sixteen sets of joint angles. 

Joint 1 2 3 4 5 6 7 

No. 1 1 1 1 1 1 1 1 

No. 2 1 1 1 1 2 2 2 

No. 3 1 2 2 2 1 1 1 

No. 4 1 2 2 2 2 2 2 

No. 5 1 3 3 3 1 1 1 

No. 6 1 3 3 3 2 2 2 

No. 7 1 4 4 4 1 1 1 

No. 8 2 4 4 4 2 2 2 

No. 9 2 1 1 1 1 1 1 

No. 10 2 1 1 1 2 2 2 

No. 11 2 2 2 2 1 1 1 

No. 12 2 2 2 2 2 2 2 

No. 13 2 3 3 3 1 1 1 

No. 14 2 3 3 3 2 2 2 

No. 15 2 4 4 4 1 1 1 

No. 16 2 4 4 4 2 2 2 

 
Table 3. Length of links (Unit: [m]). 

Link a1 d1 d3 d5 d7 

 0.100 0.320 0.400 0.350 0.065 

 
Table 4. Example of sixteen sets of joint angles (Unit: [rad]). 

Joint 1 2 3 4 5 6 7 

No. 1 1.12 -0.77 1.40 -0.61 -0.28 0.60 0.96 

No. 2 1.12 -0.77 1.40 -0.61 2.86 -0.60 -2.18 

No. 3 1.12 -0.77 -1.75 -2.53 2.86 0.60 0.96 

No. 4 1.12 -0.77 -1.75 -2.53 -0.28 -0.60 -2.18 

No. 5 1.12 -1.26 -1.40 -2.53 2.49 0.87 1.72 

No. 6 1.12 -1.26 -1.40 -2.53 -0.65 -0.87 -1.42 

No. 7 1.12 -1.26 1.75 -0.61 -0.65 0.87 1.72 

No. 8 1.12 -1.26 1.75 -0.61 2.49 -0.87 -1.42 

No. 9 -2.02 1.82 -0.96 -0.18 -1.06 0.92 2.85 

No. 10 -2.02 1.82 -0.96 -0.18 2.08 -0.92 -0.29 

No. 11 -2.02 1.82 2.18 -2.96 2.08 0.92 2.85 

No. 12 -2.02 1.82 2.18 -2.96 -1.06 -0.92 -0.29 

No. 13 -2.02 0.76 0.96 -2.96 -2.05 0.31 -0.33 

No. 14 -2.02 0.76 0.96 -2.96 1.09 -0.31 2.81 

No. 15 -2.02 0.76 -2.18 -0.18 1.09 0.31 -0.33 

No. 16 -2.02 0.76 -2.18 -0.18 -2.05 -0.31 2.81 

 

Computation of Joint Angles 

Let the desired position and orientation of the 

end-point coordinate system, and the offset angle be 

 

 0.18 0.16 0.97 ,
T

n       (33) 

 

 0.63 0.78 0.01 ,
T

t      (34) 
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 0.76 0.61 0.25 ,
T

b      (35) 

 

 0.18 0.41 0.41 ,
T

p      (36) 

 
0.80[rad].        (37) 

 

The lengths of the links are shown in Table 3. Sixteen sets 

of joint angles are computed as shown in Table 4. Here, 

the joint angles are range from  to . The 

manipulator poses that correspond to the sixteen sets of 

joint angles are depicted in Figure 10. The manipulator 

poses on x-y plane are depicted in Figure 11. As shown in 

Figure 11, the offset angles between the elbows of all 

poses and the wrist are equal to -0.80 [rad]. 
 
 

 
 

Figure 10. Computed sixteen poses. 
 
 

 
Figure 11. Computed sixteen poses on x-y plane. 

Avoidance of Obstacles 

Let the desired position and orientation of the 

end-point coordinate system be the same as in Equations 

(33), (34), (35) and (36). The desired offset angle takes 

values of -0.82 [rad], -0.55 [rad], -0.27 [rad], 0 [rad], 0.27 

[rad], 0.55 [rad], and 0.82 [rad]. The manipulator poses 

of the first set of joint angles are depicted in Figure 12. 

The manipulator poses on the x-y plane are depicted in 

Figure 13. 

As shown in Figure 12 and Figure 13, the elbow 

position of the manipulator is specified directly, as this in 

turn specifies the self-motion of the manipulator easily 

and intuitively. This allows the manipulator to move 

whilst avoiding physical obstacles located in the area 

between the end-point of the manipulator and the origin 

of the base coordinate system. 

 

 
Figure 12. Computed poses of avoidance of obstacles. 

 

 
Figure 13. Computed poses of avoidance of obstacles on x-y Plane. 

 

0.80[rad]
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Figure 14. Computed poses of avoidance of joint limits. 

 

Avoidance of Joint Limits 

Let the desired position and orientation of the 

end-point coordinate system and offset angle be 

 

 1.00 0.00 0.00 ,
T

n     (38) 

 

 0.00 1.00 0.00 ,
T

t      (39) 

 

 0.00 0.00 1.00 ,
T

b      (40) 

 

 0.18 0.41 .
T

zp p     (41) 

 

The position of z-axis pz is varied from 0.3 [m] to 0.9 [m] 

for desired offset angles of 0 [rad] and 0.70 [rad]. The 

manipulator poses of the first set of joint angles are 

depicted in Figure 14. Trajectories of the joint angles 

during the variation of the z-axis position are graphed in 

Figure 15 and Figure 16. 

As shown in Figure 15, the sixth joint angle 

becomes large as the position of the z-axis falls for the 

case of  = 0 [rad]. On the other hand, the sixth joint 

angle becomes saturated for the case of  = 0.70 [rad]. 

This feature allows the programmer to control the 

manipulator whilst avoiding joint limits. 

Computation Time of Inverse Kinematics 

The computation of the inverse kinematics derived 

in the present paper takes 31.3 [s] on a standard 

Windows PC (Core i7 965, 3.2 GHz). Feedback control 

with a higher sampling rate is realized by using the 

analytical solution for the inverse kinematics to obtain 

smooth motion of the manipulator motion. This allows 

the programmer to choose a set of joint angles for 

manipulator control, whilst avoiding singularities and 

obstacles around the manipulator and joint limits. 

 

 
Figure 15. Trajectory of joint angles ( = 0 [rad]). 

 

 
Figure 16. Trajectory of joint angles ( = 0.70 [rad]). 

 

Conclusions and future work 

Conclusions 

In this paper, an analytical solution for the inverse 

kinematics of a redundant manipulator with seven 

degrees of freedom and a rotation axis offset was 

presented. First, the self-motion of the manipulator was 

introduced through a model. Solutions for the inverse 

0[rad] 

0.70[rad] 



 ORIGINAL ARTICLE  An Analytical Solution for a Redundant Manipulator with Seven Degrees of Freedom 

www.ausmt.org  346          auSMT Vol. 2 No. 4 (2012) 

Copyright ©  2012 International Journal of Automation and Smart Technology 

kinematics were then derived with consideration of the 

geometric symmetry of the manipulator. Avoidance of 

obstacles and joint limits were also explained. Finally, 

computation time of the inverse kinematics was shown 

to be reasonably short. 

Future Work 

A selection method for a set of joint angles, 

analyses of singularities, and a method for determination 

of the offset angle will be studied. 
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