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Abstract: In this paper, an analytical solution for the inverse kinematics of a redundant manipulator with seven
degrees of freedom and an offset rotation axis is presented. We provide a model for the redundant manipulator and
introduce its self-motion. Considering geometric symmetry, sixteen sets of manipulator joint angles are obtained at
once. Avoidance of singularities and obstacles is illustrated by simulation results.
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Introduction

Many manipulators have been used for assembly
tasks in factories to improve quality and to reduce the
cost of the products being fabricated. Commonly, a
manipulator has six degrees of freedom and several
rotation axes offsets. These offsets are utilized to
increase the manipulator task space. The motion of the
manipulators in the expanded task space, however, is
restricted by singularities and joint motion limits.
Redundant degrees of freedom are used to ease these
restrictions.

Yoshikawa introduced a measure of manipulability
and showed that the degradation of manipulability of a
four-joint wrist mechanism could be avoided by the
addition of redundant degrees of freedom [1].
Hollerbach discussed the optimum design for a
redundant seven degrees of freedom manipulator, and
suggested that a rotary joint should be added to the
PUMA type manipulator in the upper arm link [2].
Kreutz-Delgado et al. introduced an arm angle as a
redundancy parameter to specify a self-motion of a
redundant zero-offset manipulator, and characterized its
algorithmic and kinematic singularities [3]. Shimizu et al.
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proposed an analytical solution for the inverse
kinematics for a redundant manipulator without offsets
using the arm angle, and analyzed the relations between
the arm angle and joint angles to obtain feasible
solutions by avoiding joint motion limits [4]. Singh et al.
proposed an analytical solution for the Barrett WAM
(Whole Arm Manipulator), which is a seven degrees of
freedom manipulator with offsets and illustrated feasible
poses [5].

As far as the authors know, there have been no
reports of an analytical solution for the inverse
kinematics of a redundant manipulator with an offset in
the upper arm. In this paper, such an analytical solution
is presented. This approach allows intuitive specification
of the manipulator's self-motion in order to produce
continuous movement in its wide task space.

In the proposed approach, the elbow position of
the redundant manipulator is specified directly, since this
naturally specifies the self-motion of the manipulator.
This allows the redundant manipulator to move whilst
avoiding physical obstacles located in the area between
the end-point of the manipulator and the origin of the
base coordinate system attached to the base of the
manipulator. The offset angle of the first joint from the
first joint angle of the manipulator without a redundant

AUSMT Vol. 2 No. 4 (2012)

Copyright © 2012 International Journal of Automation and Smart Technology


http://dx.doi.org/10.5875/ausmt.v2i4.172

[ol[IL\W.VH N (6l An Analytical Solution for a Redundant Manipulator with Seven Degrees of Freedom

rotational joint is used to specify the elbow position of
the redundant manipulator. In addition to the offset
angle, the position and the orientation of the end-point
of the manipulator are also taken into account to derive
the inverse kinematics analytically.

The computation time of the proposed algorithm is
shorter in general than those of the recursive algorithms
widely used for computing the inverse kinematics of a
redundant manipulator. Feedback control with a higher
sampling rate is realized to obtain smooth motion of the
manipulator. Consideration of geometric symmetry gives
sixteen sets of joint angles for the redundant
manipulator simultaneously. This allows the programmer
to choose a set of joint angles to control the redundant
manipulator, while avoiding singularities and obstacles
around the manipulator and joint limits.

Manipulator Model

The manipulator model is depicted in Figure 1. A
rotary joint is added to the PUMA type manipulator in
the upper arm link. There is an offset of the rotation axis
between the first joint and the second joint. The
Denavit-Hartenberg parameters are given in Table 1 Here,
Yo and X, are the base coordinate system and the
end-point coordinate system, respectively. The unit
vectors parallel to the x-, y-, and z-axes of the end-point
coordinate systemare n, t and b, respectively.

Self-motion

In the research works reviewed above, the arm
angle is used to specify the self-motion. The arm angle is
defined as angle between the reference plane and the
arm plane spanned by the shoulder, elbow, and wrist.
Here, the shoulder position is defined as the intersection
of the first, second, and third joint axes. The elbow
position is the center of the fourth joint. The wrist
position is defined as the intersection of axes of the fifth,
sixth, and seventh joints. Due to the offset between the
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first joint and the second joint, the arm angle cannot be
used in the case of the manipulator shown in Figure 1. To
specify the self-motion, an offset angle ¢ of the first joint
from the first joint angle of the manipulator without a
redundant rotational joint is introduced as shown in
Figure 2. The elbow position on the x-y plane of the base
coordinate system can be controlled with the offset angle
S. This approach allows a programmer to specify the
self-motion intuitively.

Table 1. Denavit-Hartenberg parameters of the manipulator.

Joint i 0. o radl  d;[m] a; [m]
1 6 72 d a
2 6, 72 0 0
3 6, 72 ds 0
4 Oyt /2 -7/2 0 0
> s 2 -ds 0
6 Os+ 1 72 0 0
7 6, 0 -d, 0

Figure 1. Manipulator model.

Figure 2. Self-motion of the manipulator.

Forward Kinematics

The homogeneous transformation matrix from the
coordinate system of the (k-1)th joint to the kth joint,
and its inverse, are given below with the
Denavit-Hertenberg parameters shown in Table 1.
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[co -sbcCa, SOSa, aCH,
~iy 56, COCa, —CBSa, aSb
A (49,): 0 s ’ (1)
a, Cao, d,
0 0 0 1
[ co, S6, 0 -aq
~; -50Ca; COCa, So; —d.Sq,
AL(0)=| oo (2)
'S,  —COSa; Co; —dCa;
| 0 0 0 1

Here, SO, and C4, denote sing, and cosd, respectively.
Similarly, Sai and Cey respectively denote sing, and
cosay

The transformation matrix from the origin of the
base coordinate system to the end-point of the
manipulator is given as follows:

3)

Here, fi’f,’ and 7—',,0 are respectively the rotation matrix
and the translation vector from the origin of the base
coordinate system to the end-point. The rotation matrix
consists of i, t and p . The translation vector
corresponds to the position vector of the end-point p.

The wrist position can be calculated using the
forward kinematics derived above. The offset angle &
shown in Figure 3 is obtained as follows:

5=01—tan‘1(wy/wx). (4)

Inverse kinematics
First Joint Angle

The wrist position w, which is defined as the
intersection of the axes of the fifth, sixth, and seventh
joints (as shown in Figure 3), is given by

W =p+d,b. (5)

The first joint angle of the manipulator without a
redundant rotational joint is given as tanfl(wy/WX).
Then the first joint angle @; is obtained as follows:

6, [1]:tan’1(wy/wx)+5. (6)

Considering geometric symmetry in Figure 3, the

first joint angle given below can also be used:
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0,[2]=6,[1]+x. (7)

Second, Third and Fourth Joint Angle

The wrist position of the first joint coordinate
system w' shown in Figure 4 is computed as follows:

(8)

The fourth joint angle is obtained by the

Pythagorean theorem, which gives

0,[1] =sin™ ((|VT/|2 ~d2 ~d2) 2d.d, ) (9)

To obtain the second joint angle, an angle @
must first be found; it is given by

p=tan(w,/w,). (10)

The second joint angle is then derived:

6,[1]=p—sin™ ((d3 +d,sing, )/,fw;2 +w) ) (11)

Figure 4. Second joint angle and fourth joint angle.
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Figure 5. Third joint angle.

<

Figure 6. Geometric symmetry of second, third and fourth joint angle.

Figure 7. Fifth and sixth joint angle.
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Figure 8. Geometric symﬁwetry of fifth and sixth joint angle.
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Figure 9. Seventh joint angle.
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The wrist position of the second joint coordinate
system w” shown in Figure 5 is computed by

{ﬂ =2\f(6’z){ﬂ- (12)

The third joint angle is obtained as follows:
6,[1]=tan"* (w] /w}). (13)

Considering geometric symmetry in Figure 4 and
Figure 5, the following expressions can also be used for
the second, third, and fourth joint angles:

6,[2]=6,[1], (14)
0,[2]=6,[1]-7, (15)
0,[2]==-6,[1] (16)

Considering geometric symmetry in Figure 6 then
gives the following expressions for the second, third, and
fourth joint angles:

0,[3]=20-6,[1]-7, (17)
6,[3]=-6,[1], (18)
6,[3]==-6,[1], (19)
0,[4]=20-6,[1]-7, (20)
0,[4]=-6,[1]-~=, (21)
0,[4]=6,[1] (22)

Fifth and Sixth Joint Angle

The position of the end-point corresponding to the

!

fifth joint coordinate system p’ shown in Figure 7 is
computed as follows:

2\3(6’1){2}- (23)

The fifth and sixth joint angle are obtained as
follows:

6,[1]=tan" (-p./p}). (24)
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6, [1]=cos™ (—p; /|ﬁ'|) (25)

Considering geometric symmetry in Figure 8, the
fifth and sixth joint angles can also be expressed as

0.[2]=6,[1]-7, (26)

0,[2]=-6,[1] (27)

Seventh Joint Angle

To obtain the seventh joint angle, the unit vector
parallel to the x-axis of the sixth joint coordinate system
is first computed as follows:

(28)

{ﬂ:i\g[l 00 0.

The vector product \7,, and scalar product s, of
the unit vector parallel to the x-axis of the sixth joint
coordinate system, and the unit vector parallel to x-axis
of the end-point coordinate system, are computed thus:

<i
Il

ng xn, (29)

p

)
Il
S

(30)

The direction of rotation of the seventh joint is
computed using the scalar product of \7,, and the unit
vector parallel to the z-axis of the end-point coordinate
system as shown in Figure 9. The seventh joint angle is

then obtained:
cos™ (sp)(Vp b> O)

deh —cos (sp)(Vp b< 0)

(31)

Considering geometric symmetry in Figure 8, the
seventh joint angle given below can also be used:

0,[2]=6,[1]-~=. (32)

Sixteen Sets of Joint Angles

Considering geometric symmetry, sixteen sets of
joint angles for the redundant manipulator are obtained
simultaneously with the process derived above. The sets
of joint angles are given in Table 2. The values in the
Table 2 denote the index of the solution for each of the
joint angles.

www.ausmt.or
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Table 2. Sixteen sets of joint angles.

Joint 6 & & A 23 (73 &
No. 1 1 1 1 1 1 1 1
No. 2 1 1 1 1 2 2 2
No. 3 1 2 2 2 1 1 1
No. 4 1 2 2 2 2 2 2
No. 5 1 3 3 3 1 1 1
No. 6 1 3 3 3 2 2 2
No. 7 1 4 4 4 1 1 1
No. 8 2 4 4 4 2 2 2
No. 9 2 1 1 1 1 1 1
No. 10 2 1 1 1 2 2 2
No. 11 2 2 2 2 1 1 1
No. 12 2 2 2 2 2 2 2
No. 13 2 3 3 3 1 1 1
No. 14 2 3 3 3 2 2 2
No. 15 2 4 4 4 1 1 1
No. 16 2 4 4 4 2 2 2
Table 3. Length of links (Unit: [m]).
Link a; d; ds ds dy
0.100 0.320 0.400 0.350 0.065
Table 4. Example of sixteen sets of joint angles (Unit: [rad]).
Joint 2 &) o5 O (2 Os &
No. 1 1.12 -0.77 140 -0.61 -0.28 0.60 0.96
No. 2 1.12 -0.77 140 -0.61 286 -0.60 -2.18
No. 3 1.12 -0.77 -1.75 -253 286 0.60 0.96
No. 4 1.12 -0.77 -1.75 -253 -0.28 -0.60 -2.18
No. 5 1.12 -1.26 -1.40 -253 249 087 1.72
No. 6 1.12 -1.26 -1.40 -2.53 -0.65 -0.87 -1.42
No. 7 1.12 -1.26 175 -0.61 -0.65 0.87 1.72
No. 8 1.12 -1.26 175 -0.61 249 -0.87 -1.42
No. 9 -202 182 -096 -0.18 -1.06 0.92 2.85
No. 10 -202 182 -096 -0.18 2.08 -0.92 -0.29
No. 11 -202 182 218 -296 2.08 092 285
No. 12 -202 182 218 -296 -1.06 -0.92 -0.29
No. 13 -202 0.76 096 -296 -2.05 031 -0.33
No. 14 -202 0.76 096 -296 109 -0.31 2.81
No. 15 -202 0.76 -2.18 -0.18 109 0.31 -0.33
No. 16 -202 0.76 -2.18 -0.18 -2.05 -0.31 2.81

343

Computation of Joint Angles

Let the desired position and orientation of the
end-point coordinate system, and the offset angle be

n=[0.18 -0.16 -0.97], (33)
t=[0.63 078 -0.01], (34)
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b=[0.76 -0.61 0.25] , (35)
p=[-0.18 041 041], (36)
o =-0.80[rad]. (37)

The lengths of the links are shown in Table 3. Sixteen sets
of joint angles are computed as shown in Table 4. Here,
the joint angles are range from -7z to +m The
manipulator poses that correspond to the sixteen sets of
joint angles are depicted in Figure 10. The manipulator
poses on x-y plane are depicted in Figure 11. As shown in
Figure 11, the offset angles between the elbows of all
poses and the wrist are equal to -0.80 [rad].

x[m]

ylm]

Figure 10. Computed sixteen poses.

03

N
TN

y[m]
<)

—0.80[rad]

-0.1

-02

-0.2 -0.1 0 o1 0.2 03 04
x[m]

Figure 11. Computed sixteen poses on x-y plane.
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Avoidance of Obstacles

Let the desired position and orientation of the
end-point coordinate system be the same as in Equations
(33), (34), (35) and (36). The desired offset angle takes
values of -0.82 [rad], -0.55 [rad], -0.27 [rad], O [rad], 0.27
[rad], 0.55 [rad], and 0.82 [rad]. The manipulator poses
of the first set of joint angles are depicted in Figure 12.
The manipulator poses on the x-y plane are depicted in
Figure 13.

As shown in Figure 12 and Figure 13, the elbow
position of the manipulator is specified directly, as this in
turn specifies the self-motion of the manipulator easily
and intuitively. This allows the manipulator to move
whilst avoiding physical obstacles located in the area
between the end-point of the manipulator and the origin
of the base coordinate system.

07

a8y

RN

-02
-0.4

x[m]

Figure 12. Computed poses of avoidance of obstacles.

04 0.2 0 02
ylml

e N HE T R '
0.4
0.3

02

ylm]

o1

-02

1 1 1 1 | |
-04 -03 -02 -01 0 01 02 Q3 04
x[rn]

Figure 13. Computed poses of avoidance of obstacles on x-y Plane.
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— 6=0[rad]
o =0.70[rad]

y[m]

x[m]

Figure 14. Computed poses of avoidance of joint limits.

Avoidance of Joint Limits

Let the desired position and orientation of the
end-point coordinate system and offset angle be

n=[1.00 0.00 0.00], (38)
f=[0.00 -1.00 0.00], (39)
b=[0.00 0.00 -1.00], (40)
p=[-0.18 041 p]. (41)

The position of z-axis p, is varied from 0.3 [m] to 0.9 [m]
for desired offset angles of 0 [rad] and 0.70 [rad]. The
manipulator poses of the first set of joint angles are
depicted in Figure 14. Trajectories of the joint angles
during the variation of the z-axis position are graphed in
Figure 15 and Figure 16.

As shown in Figure 15, the sixth joint angle
becomes large as the position of the z-axis falls for the
case of § = 0 [rad]. On the other hand, the sixth joint
angle becomes saturated for the case of § = 0.70 [rad].
This feature allows the programmer to control the
manipulator whilst avoiding joint limits.

Computation Time of Inverse Kinematics

The computation of the inverse kinematics derived
in the present paper takes 31.3 [us] on a standard
Windows PC (Core i7 965, 3.2 GHz). Feedback control
with a higher sampling rate is realized by using the
analytical solution for the inverse kinematics to obtain
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smooth motion of the manipulator motion. This allows
the programmer to choose a set of joint angles for
manipulator control, whilst avoiding singularities and
obstacles around the manipulator and joint limits.

3 3
2 = 2
1 51
g
K S O
-2 ® -2
-3 -3
03 04 05 06 07 08 09 03 04 05 06 07 08 09
pz [m] pz [m]
3 3
2 - 2
1 g1
0 =0 oo
-1 o prb
-2 -2
-3 -3
03 04 05 06 07 08 09 03 04 05 06 07 08 09
pz [m] pz [m]
3 3
2 —_ 2 e
1 B 1 e
0 = 0
-1 ©-1
-2 -2
-3 -3
03 04 05 06 07 08 09 03 04 05 06 07 08 09
pz[m] pz[m]
3
2
1
0
-1
-2
-3
03 04 05 06 07 08 09
pz [m]
Figure 15. Trajectory of joint angles (6= 0 [rad]).
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Figure 16. Trajectory of joint angles (6= 0.70 [rad]).

Conclusions and future work
Conclusions

In this paper, an analytical solution for the inverse
kinematics of a redundant manipulator with seven
degrees of freedom and a rotation axis offset was
presented. First, the self-motion of the manipulator was
introduced through a model. Solutions for the inverse
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kinematics were then derived with consideration of the
geometric symmetry of the manipulator. Avoidance of
obstacles and joint limits were also explained. Finally,
computation time of the inverse kinematics was shown
to be reasonably short.

Future Work

A selection method for a set of joint angles,
analyses of singularities, and a method for determination
of the offset angle will be studied.

References

[1] T Yoshikawa, "Manipulability and redundancy
control of robotic mechanisms," in [EEE
International ~ Conference on  Robotics and

Automation, 1985, pp. 1004-1009.

doi: 10.1109/ROBOT.1985.1087283

J. M. Hollerbach, "Optimum kinematic design for a
seven degree of freedom manipulator,”" in The 2nd
International Symposium of Robotics Research,
Kyoto, Japan, 1985.

(2]

@ www.ausmt.or

346

3]

(4]

5]

Copyright © 2012 International Journal of Automation and Smart Technology

K. Kreutz-Delgado, M. Long, and H. Seraji,
"Kinematic analysis of 7-DOF manipulators," The
International Journal of Robotics Research, vol. 11,
no. 5, pp. 469-481, October 1, 1992, 1992.

doi: 10.1177/027836499201100504

M. Shimizu, H. Kakuya, W. K. Yoon, K. Kitagaki, and
K. Kosuge, "Analytical inverse kinematic
computation for 7-DOF redundant manipulators
with joint limits and its application to redundancy
resolution," IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1131-1142, 2008.

doi: 10.1109/TR0.2008.2003266

G. K. Singh and J. Claassens, "An analytical solution
for the inverse kinematics of a redundant 7DOF
manipulator with link offsets," in |EEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, 2010, pp.
2976-2982.

doi: 10.1109/IR0S.2010.5649095

AUSMT Vol. 2 No. 4 (2012)


http://dx.doi.org/10.1109/ROBOT.1985.1087283
http://dx.doi.org/10.1177/027836499201100504
http://dx.doi.org/10.1109/TRO.2008.2003266
http://dx.doi.org/10.1109/IROS.2010.5649095

