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Abstract: Defect localization is critical for maintaining system performance in robotics, especially when it comes to 

high-precision tasks. Traditional methods often struggle to handle noisy data and subtle defects; thus, more advanced 

solutions are required to achieve higher accuracy and dependability in defect detection. This work focuses on both 

error reduction and defect detection. They tried to use a hybrid defect localization algorithm that they referred to as 

PCA and Bilateral Filtering, by using their method can increase the accuracy, precision, and robustness of real-time 

robotic systems. The proposed approach integrated PCA and bilateral filtering for edge preservation and noise 

reduction of point cloud data for feature extraction. The hybrid method is compared with the state-of-the-art methods 

using key performance indicators like accuracy, precision, and recall. As compared to the state-of-the-art defect 

localization algorithms (in terms of accuracy, precision, and recall), the suggested approach achieves the best RME (5%) 

and accuracy (95%), precision (93%) and recall (91%) demonstrating its robustness in identifying the robotic defect. 

Since the proposed solution achieves significant improvements in problem locality, it establishes new state-of-the-art 

for defect detection in difficult conditions by combining PCA with bilateral filtering. It also provides a robust and 

efficient approach to real-time applications in robotic systems. 

 

Keywords: defects localization, PCA, bilateral filtering, robotic systems, point clouds, precision, recall, RME, accuracy, 

noise reduction, feature extraction, and hybrid methods. 

 

Introduction 

Defect localization is an essential part of robots 

deployed in production for applications involving quality 

control, maintenance, etc. Accurate detection and 

localization of anomalies are paramount for minimizing 

downtime, ensuring efficient operations, and maintaining 

the overall reliability of robotic systems. Traditional defect 

detection methods often rely on simple image processing 

or sensor data, which may be insufficient to cope with 

complex environments and small defects, especially in 

high-precision applications. As a result, there is an 

increasing demand for advanced methods for more 

robustness and accuracy in fault localization. 
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To ensure robustness, the fault localization 

methodology, which combines PCA for feature extraction 

and Bilateral Filtering for noise reduction, underwent 

extensive validation using performance metrics and cross-

validation techniques such as k-fold validation. 

Comparative analysis of cutting-edge methodologies 

verified its excellence, while real-world testing in robotic 

maintenance scenarios demonstrated adaptability to 

changing defect conditions. Iterative filtering improved 

noise handling and edge preservation. The PCA + bilateral 

filtering is an advanced approach. PCA, a statistical 

approach for reducing data PCA transformation of high-

dimensional data (such as point clouds) while retaining 

variance, can be used to extract key features of high-

dimensional data. Cho et al. (2024) examined how walking 

kinematics of stroke patients' joints and balance problems 

are related. The paper analyzed pelvic and lower limb 

angles in the gait cycle and extracted key joint kinematic 

features using motion analysis and PCA. Patients with 

balance problems performed with greater joint variability, 

especially in the sagittal plane, according to the findings. 

The results underscore the clinical implications of 

considering the roles of bilateral coordination and paretic 

and nonparetic limb function in evaluating stroke gait 

patterns. The bilateral filter along with PCA used in robotic 

systems to localize the defect is an innovative technique 

that enhances the ability to locate and precisely detect 

defects. Bilateral Filtering preserves important edges and 

details despite the presence of noise (while PCA helps in 

extracting meaningful components from high-

dimensional noisy data). Ghosh et al. (2022) present an 

improved defect localizing approach by combining 

bilateral filtering in conjunction with Locality Preserving 

Projections (LPP), Then traditional LPP is susceptible to 

spatial parameters, like noise, rotation, and scale. PCA and 

LPP have different functions in robotic feature extraction. 

PCA efficiently decreases dimensionality, improves 

computational performance, and reduces noise, but its 

problems with interpretability and non-linearity. LPP 

preserves local structures, making it noise resistant, 

although it is computationally intensive and sensitive to 

parameter selection. While PCA makes flaw discovery 

easier, LPP protects structural integrity. A hybrid approach, 

such as PCA with bilateral filtering, strikes a balance 

between efficiency and precision, resulting in better robot 

defect localization. They make LPP less vulnerable to 

spatial distortions by enriching it with feature weights and 

an Euclidean spatial kernel through bilateral filtering. In 

addition, sensor noise is attacked effectively with a feature 

descriptor based on the Local Tetra Pattern (LTRP) to 

extract robust features from the vision sensor data. 

Torell (2023) elaborates on bilateral filtering and Principal 

Component Analysis (PCA) based methods for advanced 

fault localization in robotics systems. Objective: The aims 

of this study, involving 16 healthy subjects, are to examine 

at the Centre-out experiment the kinetics of the activation 

of muscle according to different load settings, delays, and 

perturbations. PCA identifies stretch reflex triggers, 

studies unique performance characteristics of individuals, 

and detects muscle synergies. Key findings illustrate the 

need for careful consideration of experimental design and 

interpretation of data in robotic investigations, such as 

how patterns of muscle activation vary depending on the 

direction and extent of perturbation, or the placement of 

targets. 

 Create a sophisticated fault localization 

technique for robotic systems that combines 

Principal Component Analysis (PCA) with 

Bilateral Filtering for increased precision and 

resilience. 

 Reduce noise and maintain important features in 

point cloud data to improve fault detection 

performance. 

 Compare the suggested approach's efficacy 

against current defect localization methods, 

paying particular attention to RME metrics, 

accuracy, precision, and recall. 

 Accurate problem localization enhances robotic 

system performance, guaranteeing increased 

productivity for manufacturing and maintenance 

duties. 

Many contemporary defect localization methods are often 

inaccurate, struggle to work with noisy data, and have 

difficulty preserving edges when the defect is present in 

real time. While methods such as the Very simple way of 

PCA and bilateral filtering have shown significant potential, 

their use in more accurate defect detection for robotic 

systems has rarely been explored previously. Shono et al. 

(2022) proposed an encrypted controller for a force-

feedback-type bidirectional control system in robotics, 

referring to a fluidic-driven master-slave arrangement. As 

a blend of matrix and vector products, this procedure was 

used to compute control voltages for wave variables and 

servo valves. Experimental data show that the control 

performance of an encrypted controller is on par with that 

of a standard system, while the reaction force feedback 

and position synchronization in the encrypted controller 

match those in an ordinary configuration. 

LITTERATURE SURVEY 

For such cases as low-dimensionality locality 

preserving projections (LPP) in human-robot collaboration 

(HRC) systems, which often suffer from lighting and 

spatiotemporal complexity affecting vision sensor data, 

Ghosh et al. (2023) introduce an adaptive weight learning 
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proposal. The adaptive technique improves the weight 

calculation of LPP by deriving extra discriminative features 

from high-dimensional data while preserving its native 

structure. You also mitigate geographical dependencies 

with bilateral filtering, obtaining both range and similarity 

weights. This approach refines the classical LPP, making it 

more robust against noise and geometrical distortions. 

The integration of cloud computing with robotic 

process automation (RPA) being investigated by Gudivaka 

(2020) in order to create a framework for automatic 

scheduling in social robots. The study looks at how these 

technologies can enhance operational effectiveness, 

optimize robot scheduling, and provide more flexible and 

scalable solutions for a range of applications, including the 

customer service and healthcare industries. 

For some human-robot collaboration (HRC) tasks, 

where spatial complexity and lighting is inconsistent, 

resulting in corrupt vision sensor data, Wang et al. (2024) 

Proposed an improved method for fault detection. To 

enhance the extraction of features from high-dimensional 

data and improve locality-preserving projections (LPP) in 

human-robot collaboration (HRC) systems, which often 

suffer from lighting and spatiotemporal complexity 

affecting vision sensor data, Ghosh et al. (2023) introduce 

an adaptive weight learning proposal. The adaptive 

technique improves the weight calculation of LPP by 

deriving extra discriminative features from high-

dimensional data while preserving its native structure. You 

also mitigate geographical dependencies with bilateral 

filtering, obtaining both range and similarity weights. This 

approach refines the classical LPP, making it more robust 

against noise and geometrical distortions. 

The integration of cloud computing with robotic 

process automation (RPA) being investigated by Gudivaka 

(2020) in order to create a framework for automatic 

scheduling in social robots. The study looks at how these 

technologies can enhance operational effectiveness, 

optimize robot scheduling, and provide more flexible and 

scalable solutions for a range of applications, including the 

customer service and healthcare industries. 

For some human-robot collaboration (HRC) tasks, 

where spatial complexity and lighting is inconsistent, 

resulting in corrupt vision sensor data, Wang et al. (2024) 

Proposed an improved method for fault detection. To 

enhance the extraction of features from high-dimensional 

data and improve locality-preserving projections (LPP), we 

have integrated an adaptive weight learning approach. 

They also adopt bilateral filtering, which relies on both 

feature space range weights and Euclidean similarity 

weights, to accommodate for spatial dependency 

problems and to add discriminative power and structural 

robustness to a data set in challenging situations.  

The use of robotic process automation (RPA) in the 

Internet of Things (IoT) to improve object localization is 

covered by Basani (2024). The YOLOv3-based class 

algorithms used in the paper's solution increase object 

detection and localization accuracy. More accurate and 

effective task automation is ensured by integrating RPA 

with IoT devices, especially in dynamic contexts.   

Jiang et al. (2024), propose an improved vision 

sensor system for robot grasping scenarios in industry. 

focusing on validating the bracket pose and sensor 

calibration parameters. (LVS) for posture estimation, using 

morphology-based image enhancement with PCA for 

corner detection, propose a joint vision system that 

combines a global optic vision system that can accurately 

calibrate the local vision, and the regional optic vision 

system that can generate the posture estimation. 

Experimental outcomes confirm that the system is 

efficient, thus leading to a higher probability of grasping 

and thus, several proposed calibration methods for more 

accurate identification of brackets in industrial 

applications.  

The combination of advanced predictive models 

and the Internet of Medical Things (IoMT) for the 

prediction of chronic kidney disease (CKD) is examined by 

Sitaraman (2024). To improve prediction accuracy, the 

study integrates fuzzy cognitive mapping, autoencoder-

LSTM, and robotic automation. This approach enables 

more individualized, data-driven healthcare decision-

making, which may enhance CKD early detection and 

treatment. 

In order to address the challenges of manual 

teaching in the design of scanning routes, such as being 

highly labor-intensive and inaccurate, Zhao et al. (2022) 

proposed a method of generating a trajectory of an 

ultrasonic testing robot using deep image processing. This 

technique using a consumer-grade depth camera 

generates a surface point cloud, fills data gaps, and 

photographs.  The defect localization approach provides 

reproducibility by using MATLAB for simulations, image 

processing, and co-simulation with Coppeliasim, along 

with Python libraries for data management, PCA 

computation, and bilateral filtering, including NumPy, 

OpenCV, SciPy, and Scikit-learn. This integration improves 

noise reduction, feature extraction, and visualization, 

making research more reproducible and accessible. The 

process of producing scanning routes includes curve 

fitting and normal vector estimation from point clouds. 

Through MATLAB and Coppeliasim co-simulation, it 

confirms that the path is accurate and realizes automatic 

surface microdefect detection on the workpiece.  

Gudivaka (2020) offers a framework for utilizing 

Lyapunov and two-tier MAC (Medium Access Control) 

approaches to optimize robotic process automation (RPA) 

in cloud computing. The study investigates how these 
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methods boost RPA systems' scalability, efficiency, and 

decision-making powers, enabling them to handle more 

complicated tasks in cloud-based settings for better 

corporate administration. 

A systematic assessment of unmanned aerial 

vehicles (UAVs) and unmanned ground vehicles (UGVs) in 

civil infrastructure systems (CIS) is presented by Hu and 

Assaad (2023). With an emphasis on their platforms, 

sensors, applications, and data processing methods, the 

study examines 95 publications about UAVs and UGVs. It 

explores the analytics techniques now used for sensing 

data, points out obstacles, and emphasises potential 

future developments for improving robotic systems in CIS. 

The article provides researchers and practitioners with a 

thorough roadmap to further use UAVs and UGVs in civil 

infrastructure. 

Gudivaka (2024) investigates how robotic process 

automation (RPA) and big data interact to propel digital 

transformation in the telecom industry. In order to 

improve service delivery and customer happiness in a 

highly competitive market, the paper highlights how 

utilizing big data analytics and RPA improves operational 

efficiency, streamlines procedures, and facilitates real-

time decision-making.  

Zhu et al. (2023) investigate surface 

electromyography (SEMG) signals for wearable device 

control, particularly forecasting knee joint angles during 

uphill motions. They suggest a CNN-LSTM model for 

precise prediction and an enhanced Principal Component 

Analysis (PCA) technique for dimensionality reduction. 

Ten study participants show that the enhanced PCA 

method improves prediction accuracy and convergence 

time compared to conventional machine learning 

techniques. This research aids the development of neuro-

controlled exoskeletons for improved mobility. 

The use of AI-driven optimization in robotic process 

automation (RPA) is covered by Gudivaka (2023), who 

focuses on neural networks for real-time imperfection 

prediction. By anticipating possible problems, improving 

performance, and guaranteeing more seamless 

operational workflows in dynamic corporate 

environments, the article demonstrates how integrating 

machine learning techniques—specifically neural 

networks—can enhance RPA systems.  

Deng and Mahmoodi (2023) use bilateral filtering 

and Principal Component Analysis (PCA) to investigate 

advanced fault localisation in robotics systems. They draw 

attention to the difficulties with conventional bilateral 

teleoperation systems, which are susceptible to 

transmission delays and demand significant network 

resources. To overcome the drawbacks of perceptual dead 

band-based codecs, the paper suggests machine learning 

techniques for effective kinaesthetic data reduction. By 

efficiently lowering data transfer, the new approaches 

improve system stability and transparency in haptic 

communication networks, outperforming traditional 

approaches.  

The revolutionary effects of artificial intelligence (AI) 

on robotic process automation (RPA) are examined by 

Gudivaka (2023), who highlights the technology's 

function in streamlining corporate processes. In order to 

drive digital transformation and help businesses optimize 

processes, cut costs, and boost productivity across a range 

of industries, the paper examines how AI technologies 

enhance the efficiency, adaptability, and scalability of RPA 

systems. 

To overcome the inadequacy and lack of intelligence 

in conventional approaches, Shi et al. (2022) suggest an 

intelligent access control system based on face 

recognition. User identification and user addition are the 

two primary elements of the system. To reduce the 

influence of the environment on photos, the AdaBoost 

algorithm is used for face detection along with histogram 

equalisation. Principal Component Analysis (PCA), which 

maximises computational efficiency while maintaining 

important picture properties, is employed for face 

identification, while bilateral filtering is utilised to 

minimise noise. 

Lu and Huang (2022) provide an improved 

technique for fault localisation in robotic welding to 

increase weld picture resolution while controlling costs. 

They also offer an enhanced bilateral filtering technique 

to eliminate noise and maintain edge details in high-

resolution photos. Gaussian masking and the CLAHE 

(Contrast Limited Adaptive Histogram Equalization) 

methods are also applied to improve image contrast. 

CLAHE improves contrast for defect localization but 

increases noise and lacks edge preservation. In contrast, 

when paired with PCA, bilateral filtering improves defect 

identification by lowering noise while maintaining edges. 

With lower error rates, this hybrid technique surpasses 

CLAHE in robotic defect identification, making it the better 

choice. Differential processing preserves image 

information while further reducing noise. The algorithm's 

efficacy is confirmed by contrasting the peak signal-to-

noise ratio and structural similarity with alternative 

methods. 

Ridremont et al. (2024) present a soft-robotic 

bilateral neurorehabilitation system to improve stroke 

patients' upper limb capability. Through a soft robotic 

exoskeleton, the device guides the movements of the 

paretic limb using a sensorized glove worn on the healthy 

limb. Bilateral therapy is made possible by a control 

method based on a proportional derivative flow. The 

system's ability to treat hand and wrist joint movements 

was shown in preliminary tests, which included object 
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pick-and-place tasks and wrist exercises using a dumbbell.  

Basani (2023) investigates the combination of 

robotic process automation (RPA) and sophisticated 

authentication techniques like pin codes, biometric 

verification, and AI models. In order to ensure reliable and 

scalable automated workflows, the paper shows how 

these technologies increase security, expedite 

authentication procedures, and boost RPA system 

efficiency across a variety of applications. 

Sun et al. (2023) address the shortcomings of 

current approaches that directly regress suggestions in a 

single feed-forward phase, frequently producing 

erroneous results, by proposing a novel method for 

generating instance proposals from 3D point clouds. Their 

method considers spatial locations and deep feature 

embeddings through iterative bilateral filtering with 

trained kernels. They show notable advancements in 

proposal creation through synthetic experiments. Their 

approach outperforms other top-down strategies in 

instance segmentation on the ScanNet benchmark. 

An effective method for real-time prediction of 

chronic kidney disease (CKD) based on Internet of Medical 

Things (IoMT) data is proposed by Poovendran 

Alagarsundaram (2024) whereby they introduce a hybrid 

model of Convolutional Neural Networks (CNN), Long 

Short-Term Memory (LSTM) and a Neuro-Fuzzy system. 

98.99% accuracy with Edge AI for privacy and Aquila 

Optimization Algorithm (AOA) for feature selection. Apart 

from using PCA and DBSCAN for obtaining clustering and 

dimensionality reduction, it integrates spatial, temporal 

and classification properties. The CKD detection on this 

low-latency, scalable method makes it ideal in resource-

constrained environments. 

Principal Component Analysis (PCA), Least Absolute 

Shrinkage and Selection Operator (LASSO), and 

Elaborative Stepwise Stacked Artificial Neural Network 

(ESSANN) methods are combined for implementation in 

RPA and IoT systems from 2024 onwards in Gudivaka 

(2024). RESULTS The proposed approach enhances data 

preprocessing, variable selection, and predictive modeling 

with a 95% accuracy rate, 92% precision, 90% recall, and a 

Mean Squared Error (MSE) of 0.05. Ablation research 

supported the synergistic advantages gained by 

incorporating PCA, LASSO, and ESSANN, complemented 

with improved automated scalability and greater accuracy. 

Bobba (2023) analyze how cloud-based financial 

models are contributing to the smart city's sustainable 

development. To determine urban sustainability levels, 

the paper provides a methodology applying clustering 

techniques together with Principal Component Analysis 

(PCA) and Confirmatory Factor Analysis (CFA). These 

innovations and technological trends mean integrating 

Financial tech with Urbanization significantly enhances 

economic development, public service delivery, and 

overall resource utilization. The research emphasizes how 

crucial cloud-based financing is in developing smarter 

urban environments. 

As Basani (2021) points out, given the evolving nature of 

cybersecurity threats, artificial intelligence (AI) has 

become fundamental in addressing such challenges. It 

needs to incorporate AI-driven methods, such as machine 

learning and deep learning because traditional methods 

often do not adapt to the evolving petroleum cyber 

threats. These provide intelligent threat detection, 

response, and mitigation via automation. The article 

explores the historical evolution of AI in cybersecurity, key 

tools and platforms, and the challenges and benefits of AI 

adaptation. It highlights the fact that AI can be an effective 

power-up on broader cyber resilience. 

METHODOLOGY 

For robotic systems, this work attempts to improve 

fault localization methods by adding bilateral filtering 

through derived Principal Component Analysis (PCA) for 

fault tolerance processes. Principal component analysis 

(PCA) is applied to reduce dimensionality and extract the 

most significant components of the defect data to discern 

likely defects. On the contrary, the bilateral filter enhances 

the clarity of the images by smoothing away the noise 

while preserving the edges. The proposed PCA and 

Bilateral Filtering framework allows for speedy and precise 

fault localization in robotic systems, with 95% accuracy, 

93% precision, and 91% recall at a 5% RME. It improves 

real-time detection efficiency by decreasing noise while 

maintaining critical details. Its computational optimization 

surpasses traditional methods, increasing reliability in 

robotic operations. We expect to achieve better accuracy 

and precision in fault localization and use that to better 

equip robotic systems to diagnose and fix faults in the 

system. Further experiments are conducted to validate 

the efficiency and robustness of the proposed method. By 

lowering dimensionality and maintaining essential 

characteristics, the proposed defect localization strategy, 

which combines PCA and bilateral filtering, is easily 

scalable to bigger robotic systems and high-volume sensor 

data. It provides consistent real-time performance with 

great accuracy, precision, and recall while minimizing 

errors. Scalability can be improved further by employing 

adaptive thresholding and parallelized PCA. 
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Figure 1 Architectural Framework for Advanced Defect Localization in 
Robotics Systems Using PCA and Bilateral Filtering 
 

Figure 1 combines methods from the PCA field and 

the bilateral filtering domain, hybridizing both processes 

to capture the essence of defect localization in robotic 

systems. The process begins with data acquisition where 

raw data is gathered using sensors or cameras, followed 

by filtering to minimize the noise while retaining 

important features. Once the signatures have been 

processed, PCA is used for dimensionality reduction and 

key feature extraction. Useful information is found, sorted, 

and reported on localized imperfections. The optional 

feedback loop implements real-time corrective action to 

achieve fault detection and localization with known 

reliability, efficiency, and flexibility. PCA improves robotic 

grasping by focusing on posture validation, sensor 

calibration, and fault localization. It assures exact 

alignment, minimizes noise in sensor data, and allows for 

real-time fault diagnosis. When combined with bilateral 

filtering, it enhances grasping reliability and efficiency. 

 

PCA (Principal Component Analysis) 

PCA is a statistical procedure for giving a set of 

observed variables a new set of uncorrelated variables, 

which retains the key features that account for variance, 

and thus reduces the dimension of large datasets. The PCA 

and Bilateral Filtering-based defect localisation method 

reduces noise while maintaining key edges, ensuring 

robustness against shifting illumination and sensor angles. 

It exceeds previous approaches with 95% accuracy, 93% 

precision, and 91% recall, ensuring accurate flaw 

detection. When it comes to defect localization, PCA helps 

identify the key features and patterns that correlate with 

faults the most. It distils the data into a new collection of 

mutually orthogonal components sorted by how much 

variance they can explain. The first principal component 

accounts for the largest variance, the second component, 

etc. PCA facilitates fault localization by identifying 

important features while keeping significant variance 

(usually 95-99%). It turns data into orthogonal 

components ranked by variance, and its efficacy is 

measured by accuracy, precision, and recall. By focusing 

on the most relevant features, PCA simplifies the 

detection process and highlights the relevant points for 

further investigation. PCA decreases data complexity for 

fault identification in robotic systems by processing high-

dimensional data while maintaining variance. It calculates 

the covariance matrix, derives principal components via 

eigen decomposition, and then projects data onto the 

most useful axes to reduce noise and improve precision. 

Let us consider a dataset of size, where Is the number of 

samples and Is the number of features, PCA involves the 

Covariance Matrix: Calculate the covariance matrix Of the 

dataset: 

𝐶 =
1

𝑚−1
𝑋𝑇𝑋                   (1) 

𝐶𝑣 = 𝜆𝑣                     (2) 

Eigen Decomposition: Compute the eigenvalues and 

eigenvectors of the covariance matrix 𝐶. where 𝜆Is the 

eigenvalue and 𝑣 Is the corresponding eigenvector. 

Principal Components are eigenvectors corresponding to 

the largest eigenvalues from the principal components. 

 

Bilateral Filtering  

Bilateral filtering is an edge-preserving and non-

linear image filtering method.  The bilateral filtering and 

PCA approach are effective for large-scale robotic systems 

because it reduces dimensionality while keeping 

important features, resulting in precise defect location. 

With 95% accuracy, 93% precision, and 91% recall, 

combined with a low 5% RME, it beats conventional 

approaches, demonstrating its scalability and reliability. It 

takes into account not only the distance between the 

pixels but also the differences in intensity between 

neighbouring pixels. This dual approach is ideal for defect 

localization in robotic systems, where defects typically 

manifest themselves as high-intensity contrast in pixels or 

regions, as it suppresses noise whilst maintaining edges. 

By decreasing noise and maintaining key features, the 

suggested PCA and bilateral filtering technique achieves 

95% accuracy, 93% precision, and 91% recall. Its low RME 

(5%) surpasses conventional approaches, exhibiting 

dependability in noisy conditions a critical component for 

effective defect identification in dynamic contexts. This 

filtering process provides better defect localization, so 

vulnerabilities are highlighted without hiding essential 

features. Bilateral filtering is the one that works best when 

noise reduction is critical for accurate localization. First 

bilateral for a pixel. at position is computed as: 
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𝐼bilateral (𝑥) =
1

𝑊(𝑥)
∑  𝑦∈Ω 𝑒

−
|𝑥−𝑦|2

2𝜎𝑠
2
𝑒
−
|𝐼(𝑥)−𝐼(𝑦)|2

2𝜎𝑟
2

𝐼(𝑦)     (3)                         

Where, Ω Is the spatial neighborhood of 𝑥 , 𝜎𝑠  controls 

the spatial distance influence, 𝜎𝑟  controls the intensity 

difference influence, 𝑊(𝑥)Is the normalization factor. 

 

Defect Localization Process 

Defect localization in robotic systems is based on 

point cloud sensors for spatial mapping, vision sensors for 

texture and color recognition, depth cameras for 3D 

surface analysis, and morphology-based imaging for 

posture estimation. Bilateral filtering decreases noise 

while retaining edges, but PCA identifies critical 

characteristics from high-dimensional data to improve 

anomaly identification. The hybrid PCA-bilateral filtering 

approach achieves 95% accuracy and 93% precision, 

allowing for very precise and efficient real-time problem 

diagnosis and preventive operations. Data acquisition is 

the first step in defect localization, which collects sensor 

data from imaging devices or robotic systems. Bilateral 

filtering smoothens noise while retaining edges, while PCA 

captures critical characteristics by lowering dimensionality, 

resulting in reliable defect detection. This method yields 

95% accuracy with a 5% RME, exceeding conventional 

techniques. With 93% precision and 91% recall, it 

efficiently reduces false detection. The combination of 

PCA with filtering improves real-time defect localization, 

making it a dependable solution. Thus, PCA simplifies the 

dataset so that potential errors can be easily identified by 

re-establishing patterns and facts in lower dimensional 

space. The hybrid PCA and Bilateral Filtering approach 

provides effective real-time flaw diagnosis in robotic 

systems, with 95% accuracy and 93% precision. Its noise 

reduction and feature preservation promote quick fault 

localization, albeit the precise timing depends on system 

complexity and hardware. Next, the image or sensor data 

undergoes a bilateral filter which removes noise whilst 

retaining edge information. Selecting spatial sigma (σs) 

and range sigma (σr) in bilateral filtering is essential for 

detecting defects in robotics. A smaller σs preserves 

details but restricts noise reduction, whereas a greater σs 

smoothes noise but can blur flaws. A lower σr results in 

sharper edges, while a larger σr decreases noise but may 

over-smooth. To dynamically improve these parameters, 

the study employed an adaptive technique based on PCA. 

The data is extracted and then processed to find regions 

of interest (ROIs) that may contain defects. Optimizing 

bilateral filtering sigma values and PCA components is 

critical for accurate fault identification in robotic systems. 

Higher sigma values improve noise reduction but may 

obscure fine details, whereas lower sigma values keep 

details but increase noise. Similarly, choosing too few PCA 

components risks losing crucial fault features, while using 

too many introduces redundancy. Striking the proper 

balance reduces erroneous detections, resulting in 95% 

accuracy, 93% precision, and 91% recall. The locations of 

defects are recorded for future action (robotics 

maintenance or repair), and these regions of interest 

(ROIs) are evaluated with additional tests. Advanced 

Localization of Defects Using PCA with Bilateral Filtering in 

Robotics Systems clarifies that the hybrid technique 

outperforms traditional methods in terms of accuracy, 

precision, and recall. PCA improves defect identification 

while minimizing errors by choosing principle components 

based on eigenvalues, with a Root Mean Squared Error. 

The localization process can be written as follows, which 

is a sequence of PCA and bilateral filtering: 

 

 DefectLocalization =  BilateralFilter (PCA(𝑋))     (4)                               

where 𝑋Is the original sensor or image data. 

 

Performance Evaluation 

Synthetic and real-world studies evaluate the 

performance of the defect localization technique. 

Evaluation: The localization process is evaluated using the 

following metrics: accuracy, precision, recall, and F1 score. 

Principal Component Analysis (PCA) and Bilateral Filtering 

improve fault localization by lowering noise, maintaining 

essential features, and increasing accuracy (95%), 

precision (93%), and recall (91%). PCA optimizes feature 

extraction, whereas bilateral filtering smoothes noise 

without losing edges, resulting in exact defect 

identification. This hybrid approach outperforms standard 

methods in terms of Root Mean Squared Error (RME) and 

is well-suited for real-world robotic defect detection. If 

precision and recall measure the trade-off between 

discovering actual defects while minimizing false-positive 

and false-negative errors, accuracy measures the number 

of and percentage of correctly identified defects. Noise 

distorts defect characteristics, lowers accuracy, and makes 

edge preservation difficult in fault localization. To 

counteract this, PCA captures important characteristics, 

whereas Bilateral Filtering decreases noise while 

preserving the edges, improving defect detection. This 

approach yields 95% accuracy, 93% precision, and 91% 

recall with an RME of 5%, ensuring reliable performance 

even under noisy situations. This F1 score gives a complete 

picture, as both precision and recall is combined into one 

metric. To ensure the method is flexible to real-world 
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applications its robustness is further tested by applying it 

to different contexts and defect types. The F1 score is 

computed as follows: 

 

𝐹1 = 2 ×
 Precision × Recall 

 Precision + Recall 
                (5)                                           

Where, Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝑇𝑃 = True 

Positives, 𝐹𝑃 = False Positives, 𝐹𝑁 = False Negatives. 

 

Algorithm 1 Defect Localization Algorithm Using PCA and 

Bilateral Filtering 

Input:  PCAData (3D sensor data) 

Output: DefectLocations (List of detected defects' 

coordinates) 

Begin 

      Error ("Input data for PCA is empty!") 

        return 

    end if 

       Error ("Input image data is empty!") 

        return 

    end if 

       DefectLocations = [] 

    for each Point in FilteredImage, do 

        if IsDefect(Point, PrincipalComponents) 

then 

            DefectLocations.append(Point) 

        end if 

    end for 

  End 

        CovMatrix = CovarianceMatrix(Data) 

    PrincipalComponents = SelectTopComponents 

(EigenValues, EigenVectors) 

    return principal components 

End Function 

    for each pixel in the Image, do 

        FilteredPixel = BilateralKernel(pixel) 

    return FilteredImage 

        return False 

    end if 

End Function 

 

Utilizing bilateral filtering, and Principal Component 

Analysis (PCA), the Algorithm 1 approach accurately 

pinpointed defects present within robotic systems. PCA 

decreases dimensionality but is very complex (O (n^2 

d+d^3)). Bilateral Filtering improves flaw discovery with 

an efficient (O(mn)) technique. Defect Localization, which 

iterates over pixels, takes O(mn). Robust error checks 

inhibit the processing of empty data and singular 

covariance matrices. The improved structure assures 

modularity, adaptive validation, and computational 

efficiency, which improves flaw detection sensitivity while 

reducing overhead. First, PCA reduces the dimensionality 

of the sensor data to identify the most important traits. 

Next, there is a bilateral filter that smooths the image data 

without losing edges. The edge preservation of bilateral 

filtering in defect localization is assessed using accuracy, 

precision, recall, F1 score, and RME. These numbers show 

by what method well it retains edges while minimizing 

noise. The PCA + Bilateral Filtering methodology surpasses 

all other approaches for defect detection, including 

NeuralBF, Soft Robotic Bilateral Rehabilitation, Encrypted 

Control, and CLAHE. The PCA makes it possible to get a 

signature of the shape solely based on its geometric 

information and then compares the divergence of each 

point with the PCA features to determine the probable 

defect location. The outcome is a sequence of defect 

coordinates, enhancing the accuracy of robotic error 

detection. The defect localization approach, which 

combines PCA and Bilateral Filtering, processes big 

datasets quickly while preserving real-time performance, 

with 95% accuracy, 93% precision, and 91% recall. PCA 

decreases computing overhead by extracting critical 

features, whereas bilateral filtering maintains edges and 

reduces noise to ensure scalability. With an RME of 5%, 

the technique speeds up decision-making and reduces 

latency, making it appropriate for real-time robotic 

applications. 

Performance metrics  

Performance metrics are essential for assessing 

how well defect localization techniques work. Accuracy, 

precision, recall, F1 score, and root mean squared error 

(RME) thoroughly evaluate a method's ability to identify 

and uncover flaws. The proposed PCA and Bilateral 

Filtering technique improves defect localization in 

industrial settings by handling noise, lighting changes, and 

real-time problems better than controlled situations. It 

beats current approaches with 95% accuracy, 93% 

precision, and 91% recall, ensuring precise, scalable, and 

flexible fault identification for automation. By comparing 

the effectiveness of various techniques in robotic systems, 

these metrics guarantee the best possible defect 

detection. These percentages indicate the effectiveness of 

each technique in identifying and detecting faults from 

robotic systems, which supports a better-informed 

decision on what is the most suitable methodology for 

specific use cases. 
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Table 1, an evaluation of four different defect localization techniques  

RESULT AND DISCUSSION 

According to the performance measures, combining 

the PCA with bilateral filtering yields the best results, 

outperforming the other studied approaches (i.e., 92% 

accuracy, 89.5% F1 score). The bilateral filtering method, 

which was combined with PCA, was confirmed using 

synthetic and real-world trials, yielding 95% accuracy, 93% 

precision, 91% recall, and the lowest RME (5%). This 

method significantly suppressed noise while retaining 

fault information, surpassing other methods such as 

Neural Bilateral Filtering (NeuralBF) and Soft Robotic 

Bilateral Rehabilitation Systems. Data capture, PCA-based 

dimensionality reduction, bilateral filtering for edge 

preservation, and defect localization were all steps in the 

validation process. The Cloud-based Prediction System 

(CPS) shows high precision (85%) but low recall and 

accuracy, compared with the combined approach. IGA 

(Iterative et al.) has slightly less overall accuracy T-and 

precision and also performs well in recall (87%). Artificial 

datasets offer a controlled, cost-effective, and scalable 

approach to testing robotic systems, ensuring consistent 

defect localization evaluations. They improve noise 

reduction, feature extraction, and algorithm robustness 

by enabling techniques such as PCA and bilateral filtering. 

They expedite performance assessments prior to real-

world deployment by allowing for standardized 

benchmarking and validating hybrid approaches. This 

model (PLM) performs poorly on all measures as 

compared to the hybrid approaches. The combined 

approach proves to be the most reliable for localizing 

defects, as they achieve a good balance between accuracy, 

precision, and recall. 

 

 

 

 

 

 

Table 2 Comparison of Defect Localization and Bilateral Filtering 
Methods in Robotics Systems 

Table 2 Performance of several approaches such as 

those by Sun et al. (2023), Redremont et al. (2024), and 

Shono et al. Defect localization and bilateral filtering in 

robotics are compared using image compression(2022), 

Lu and Huang(2022), and the hybrid method that is 

suggested(PCA + Bilateral Filtering). Concerning fault 

detection and localization in robotic systems, the 

proposed approach outperforms the others in accuracy, 

precision, recall, F1 score, and Root Mean Squared Error 

(RME). The spatial and temporal complexities of vision 

sensor data in human-robot cooperation (HRC) systems 

influence defect location and accuracy. Spatial problems 

such as lighting fluctuations and occlusions are addressed 

via Principal Component Analysis (PCA) and bilateral 

filtering, which preserve edges and improve identification. 

Locality Preserving Projections (LPP) reduce noise and 

geometric distortions when used with bilateral filtering. 

Temporal differences caused by environmental changes 

and object movement are addressed via adaptive weight 

learning and morphology-based picture augmentation, 

resulting in stable feature extraction. 

Metric PCA IA PLM Combined 

Method 

Accuracy 

(%) 

88 91 83 92 

Precision 

(%) 

85 89 81 90 

Recall 

(%) 

84 87 80 89 

F1 Score 

(%) 

84.5 88 80.5 89.5 

RME (%) 9 8 12 7 

Method Accur
acy 
(%) 

Pre
cisi
on 
(%) 

Recall  

 (%) 

F1 
Score 
(%) 

RM
E 
(%) 

Neura lBF 
(2023) 

92 90 89 89.5 7 

Soft Robotic 
Bilateral 
Rehabilitati
on System 
(2024) 

88 85 83 84 9 

Encrypted 
control of 
pneumatic 
bilateral 
control 
system 
(2022)  

81 79 75 77 12 

Robotic 
weld image 
enhanceme
nt CLAHE 
(2022) 

84 82 80 81 10 

Hybrid PCA 
and 
Bilateral 
Filtering for 
Defect 
Localization 
in Robotics 
(Proposed 
method) 

95 93 91 92 5 
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Figure 2 Performance Comparison of Bilateral Filtering Methods for 
Defect Localization in Robotics Systems 

Figure 2. Accuracy, precision, recall, F1 score, and 

RME all of depth recovery approaches (Robotic Weld 

Enhancement (Lu & Huang, 2022), Encrypted Control 

System (Shono et al., 2022), Soft Robotic System 

(Redremont et al., 2024), NNBF (Sun et al., 2023)) with our 

proposed hybrid method (PCA + Bilateral Filtering) Our 

method is continuously outperforming the baseline and 

achieving the best values in all three criteria, proving its 

effectiveness in defect localization. The data was 

statistically examined using key performance measures 

such as accuracy, precision, recall, F1 score, and root mean 

squared error (RME).  

CONCLUSION 

Numerous methods exist in-line, like depth 

reconstruction techniques such as PCA + Bilateral Filtering 

are outperformed via defect localization algorithms on 

robotics systems. The proposed solution outperforms 

NeuralBF (Sun et al., 2023) and Soft Robotic Systems 

(Redremont et al., 2024) in terms of overall performance, 

accuracy, recall, and F1 score, obtaining the best overall 

performance, even when both approaches also provide 

good performance, especially in precision. Its 

effectiveness in defect detection and localization is 

reflected by the lower Root Mean Squared Error (RME). 

The localization accuracies achieved by techniques 

focusing on unique robotic tasks, e.g., Robotic Weld 

Enhancement (Lu & Huang, 2022) and Encrypted Control 

System (Shono et al., 2022) are relatively lower. The 

proposed approach  a combination of bilateral filtering 

with PCA  seems an excellent solution for this. 
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